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ABSTRACT

We investigate the application of conditional
sequencing to robot navigation. Initial experimental
results indicate that very robust navigation can bc
achicved by layering a conditional scquencer on top
of a set of simple scnsorimotor behaviors. The
approach is uniquely flexible, permitting very
complex tasks to be programmed reliably in very
short periods of time. The tcchnique was used in the
recent American Association of Artificial
Intelligence mobile robot contest. All of the
contest-specific code was written in three days by a
single programmer. The robot turned in the best
overal performance of any entry. In addition, wc
present the results of over ninety formal
experimental runs performed under a variety of
circumstances.

1. Introduction

In earlier work wc introduced atcchnigue for
mobile robot navigation based on conditional
sequencing [Gat91]. At that time wc presented
anccdotal evidence to support the claim that
conditional sequencing is an cffcctive technique for
mobile robot navigation. In this paper wc describe
ongoing cxperimental studies of autonomous
navigation based on conditiona sequencing.

Conditional sequencing (also called recactive
plan execution) is an Artificia Intelligence software
technology for controlling autonomous systemsin
unpredictable  environments  [Firby89,
McDermott93]. To dale, conditional sequencing
systems have shown great promise controlling
systems in complex simulated environments.
However, the technique has not been extensively
applicd to real robots. In this paper wc present
someinitial investigations in this direction, as wcll
as some preliminary but very promising

experimental results, To date wc have performed
over ninety formal experimental runs.

Informally, conditional sequencing is a
technique for getting a robot to follow instructions.
Conditional scquenccs arc distinguished from the
more classical notion of a plan in that the
instructions are not necessarily linear scquenccs of
steps. Instead, the execution of conditional scquencc
isdependent on the situation that unfolds during
execution, Conditional sequences may include
constraints on situations which do not manifest
themselves until run lime.

The following is an informal example of a
conditional sequence:

To assemble awidget, locate Part
A and Part B and a l/2-inch screw.
Inscrt Part A into the hole in Part
R and fasten with the screw. Take
care not to over tighten the screw.
If Part A dots not slide into the
hole easily, usc a picce of
sandpaper to remove any
protruding bumps.

Thisis a set of instructions, but it is not a
linear scquence. For example, the instruction “take
care not 10 over lighten the screw” is not a step 10
bc performed after the preceding onc (“fasten with
the screw”); itisa constraint to bc applied
simultaneously with the fastening operation. The
last instruction is an example of a contingency
procedure. It is normally not performed at al, but
only in the case where something goes wrong,

Conditional scquences work by invoking
lower-level sequences, For example, locating Parts
A and B involves invoking a procedure for searching
for an object, which carries with it its own
constraints about where to search, and contingency
procedures about what to do if the search fails (look
underneath things, for example). Robustness is




achicved by having a large number of contingency
procedures which can recover from failures. Thus,
the system can bc made reliable even though failures
arc common provided that the failures arc made
cognizantly, that is, provided that the robot can
detect the failures.

Conditional sequencing has been applied
mostly to high-level task execution. In this paper
wc investigate the applicability of the technique to
mobile robot navigation, The intuition behind this
approach is that robots can navigate by following
instructions similar to those that humans give to
guide others to unknown destinations. For example:

To get to the lab, go out the door,
follow the hallway to the left.
Turn right at the second corridor,
Go around the big planter in the
middle of the hall and turn at the
third door on the right. If the hall
is blocked, go around the other
way, or go back to the office and
ask for help,

This top-level sequence would be expanded in
terms of procedures for following halls, turning
around corners, moving around obstacles, cic. The
hierarchy bottoms out in primitive procedures which
arc simply scnsorimotor control laws that arc
engincered by hand.

Wc advocate bottom-up development, where
10W-1CVC1 primitives arc designed first and their
performance is empirically characterized and
debugged, By performing empirica verification of
primitives wc avoid the extremely difficult problem
of analyzing the interactions of the robot with its
environment.

Scquences arc then built on top of the
debugged primitives, This is similar to the
development methodology advocated by Brooks in
his subsumption architecture [Brooks86] in which
complex behaviors arc built on top of simpler ones,
but it differs in the manner in which the layers
interact.  In subsumption the layers interact by
arbitration: higher layers override lower ones and
seize control of the vehicle's actuators. In our
approach, higher layers provide input to the lower
layers in order to parameterize their actions. Only
the lowest layer actually controls the robot’s
actuators directly. More details on our architecture
and development methodology can be found in
[Ga192]. There arc anumber of rescarchers pursuing
similar approaches including Connclt [Conncl191 ],
Arkin [Arkin90], and Bonnasso [Bonnasso92]. It IS
interesting to compare our work with Simmons

[Simmons90} who advocates top-down development
rather than bottom-up.

2. The Robot

21 Hardware

Our experiments were performed with 100%
off-the-shelf commercialy available hardware. This
presents a unique opportunity to perform
indcpendent verification of our experimental results.,
Our software can bc used without modification by
any rescarcher with the following hardware. (In fact,
wc used a pair of identical robots during the course
of the experiments, both using the same software.)

Each robot used in our experiments is a Real
World Interface (RWI) B12 base with an 8-inch
development enclosure, The B 12 is a 12-inch
diameter circular base with a three-wheel
synchrodrive mobility mechanism. The robot is
thus capable of turning in place, and can travel along
any path (athough paths with discontinuous
curvature require the robot to stop), The circular
shape, synchrodrive, and the B 12's robust design
make it a very convenient research platform.

The development enclosure, also from RWI,
houses a Gespak MPL-4080 68000-based single-
board computer, aring of twelve Polaroid ultrasonic
sensors, and a controller board for the sonars, On
top of the development enclosure Sits an Apple
Macintosh Powcrbook. The connection between the
Macintosh and the rest of the robot is an RS-232
link, so a desktop Mac could also be used with an
appropriate tether or wireless serial link.

Wc made onc modification to our robot.
Because the robot has twelve sonars, each of which
covers a30-degree cone, there arc two different sonar
configurations to choose from. (See figure 1.) The
robot comes out of the box with a configuration
shown in figure la Wc changed this to the
configuration shown in figure Ib. Wc found that
having a sonar pointing at the major compass points
has some practical advantages when developing wall-
following and obstacle-avoidance algorithms. The
development enclosure is specifically designed to
alow thisreconfiguration, It takes about five
minutes and requires no tools.
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Figure 1: Two alternative sonar
configurations. The central arrow
shows the robot’s direction of travel.

2.2 software

All development was done using Macintosh
Common Lisp version 2 running under system 7.1.
Embedded in the Lisp environment is a custom
devclopment system for the 68000 processor on the
robot. This system includes an assembler, an
operating system for the 68000, and a compiler for
the ALFA programming language [Gat91 | which is
used to program primitive behaviors,

In the experiments described in this paper
conditional sequencing was done using two different
systems. The first experiment (described in scetion
3) used a simplified conditional sequencer
implemented directly in Lisp using the Lisp
catch/throw construct. The second ecxperiment
(section 4) was implemented using Firby's Reactive
Action Package (RAP) system [Firby89]. The RAP
system has recently been re-implemented in
Common Lisp, and is freely available for non-
commercial usc. Wc modified Firby's system
dlightly by adding an interface to the robot. Both of
these systems will be described in more detail in the
appropriate section.

2.3 Primitive Behaviors

Our development methodology begins with the
design of simple scnsorimotor behaviors which arc
used a building blocks for more complex activities.
In this case wc arc concerned with navigation in an
indoor environment where walls and doorways can
be used as positional cucs. The robot must be able
to deal with uncxpected obstacles, but must not rely

too heavily on dead reckoning. Because of rotational
drift, dead reckoning errors increase faster than the
sguare of the distance traveled. Dead reckoning is
reliable only for distances of about five meters or
less.

For indoor environments wc usc three basic
behaviors: dead-reckoning to a position while
avoiding obstacles, following walls, and aligning to
walls. Thisrepertoire is generic to many tasks, and
has not changed since wc began this work three
years ago, athough wc have fine-tuned the
algorithms a bit since then.

The dead-reckoning behavior works as follows.
The robot turns towards the designated goal location
and begins to move forward. If the robot detects an
obstacle some distance away it ows down and veers
away from the obstacle. If the robot detects an
obstacle nearby it stops and turns in onc direction
(chosen according to the location of the obstacle and
the goal) until it is able to move forward by a small
amount. This “directional laiching” prevents the
robot from oscillating back and forth in anever-
ending loop. The threshold distances for these two
behaviors arc determined empiricaly.

Wall-following is performed by simply
servoing to onc of the side-looking sonars. The
algorithm contains a number of hacks to keep the
robot stable and to handle doors. The wall-
following algorithm also stop for obstacles.
(Reliably moving around obstacles while following
a wall is an unsolved problem.) There is no
theoretica justification for the algorithm. In fact, it
can be shown mathematically that the naive
algorithm ought to be unstable. Nevertheless, the
algorithm dots work in practice with high
reliability.

Wall alignment is done by servoing the robot’s
heading until two adjacent sonars read the same
distance, Experimentally this simple algorithm
aligns the robot 1o smooth surfaces with an accuracy
of better than onc degree. Wall aignment is used to
correct for rotational drift brought about by slight
misalignments in the robot’s wheels, The result is
dramatically improved dead-reckoning performance.

2.4 Cognizant Failure

There arc certainly better algorithms for
performing all of these functions than the ones just
described. However, the point is not 10 develop
bullet-proof algorithms, but rather to show that
conditional sequencing works. In fact, to test
conditional sequencing it is better that the primitive
behaviors not work perfectly because we wish to
demonstrate that conditional sequences can recover



from failures, and thus produce reliable performance
even when the primitives arc unreliable.

In order to recover from failures it isnceessary
for the robot to be able 10 detect failures when they
occur. Failures which the robot can detect we term
cognizan! failures. To produce cognizant failure wc
augment the primitive behaviors with monitoring
routines which check to see that things arc working
properly.  These monitor routines vary from
situation to situation, but arc all fairly
straightforward.

The dead-reckoning monitor checks the robot’s
position to sccif it is outside of a bounding region.
It also imposes a time limit on reaching the
destination, The time limit and the size of the
bounding region arc parameters which can be
changed by the scquencer. Default values arc
computed according to the initial distance to the
godl,

The wall-following monitor checks the robot’s
heading to make sure that it is not turning faster
than expected duc to rotational drift. It also makes
sure that the distance to the wall is within an
expected range, and that the robot is not stopped duc
to an obstacle.

The wall-alignment monitor checks that the
heading correction produced by wall aignment is not
greater than an expected threshold. It also imposes a
time limit on the a ignment process.

The sequencing infrastructure allows ncw
monitors to be defined by the programmer if desired.

2.5 Basic Sequences

As an illustration of how conditional
sequencing works wc describe afcw basic low-level
scquences which we used in a number of our
cxperiments.

The dead-reckoning and wall-alignment
primitives can be used to construct more robust
dead-reckoning and wall-a ignment sequences Simply
by retrying the primitive if it fails. For an example
of how this works consider the situation in figure 2.
The robot has to dead-reckon to a location which is
blocked by an obstacle. Since the robot has no
globa map, and there arc no local indications of
which direction is preferable for circumnavigating
the obstacle, the robot chooses a direction at
random, Suppose it dccidcs to go to the right,
which happens to lead to an inefficient path. At
some point the robot monitor indicates a cognizant
failure when the robot moves outside the bounds of
the monitor region. At this point, the scquencer
reslarts the primitive.  The robot turns to face the

goal, at which point the obstacle is on the robot's
right, The robot therefore veers away to its left, and
eventually moves around the obstacle in the correct
direction.

Of course, there are situations where this
strategy fails. However, such high-level failures arc
also cognizant failures, and thus can be dealt with by
higher-level recover procedures.

Monitor-region boundary

Figure 2: A basic sequence.

A second example of a basic scquence is
following a wall past open doors. Normally an
open door causes the wall-following primitive to fail
cognizantly, since there is no longer a wall to
follow. If the robot needs to move past open doors
it smply invokes the dead-reckoning primitive to
move past the door, and then starts following the
wall again. This sequence requires its own monitor
to make sure that it manages to find the wall on the
other side of the door. If it dots not, the robot must
first realign itself to the wall before proceeding.

By building up successively more complex
repertoires of conditional sequences wc have been
able to achicve very complex goal-directed behavior,
as described in the following sections.

3. Experiment 1. The AAAI Robot
Contest

The hardware and computational infrastructure
described above was used to program an entry for the
second American Association of Artificial
Intelligence (AAAT) mobile robot contest. All of
the contest-specific code was written in three days by
a single programmer. The robot turned in the best
overall performance of any entry in the events
entered.




The contest consisted of three events, of which
only the first two were entered. (The third cvent
involved manipulating large cardboard boxes which
our small robot was physically incapable of doing.)
The contest took place in a large arena made of
rcconfigurable panels which were rearranged for the
various events.

1 iencing Infrastroctur

The sequencing infrastructure used in these
experiments was a simple conditional sequence
compiler implemented dircctly in Common Lisp
using the catch/throw facility of that language
[Steele90).

For this simplified sequencer we made the
assumption that scquencc execution was nominaly
linear except when a cognizant failure occurred. Wc
therefore implemented as our basic sequencing
construct a macro called with- recovery-
procedures which has the following syntax:

(with-recovery-procedures
timeout action
(failure-code recovery-
procedure )
(failure-code recovery-
procedure)

)

Monitor procedures signaled a failure by
calling afunction called f ai 1 which took as an
argument a Failure code which indicated the type of
failure. This failure code was propagated upwards
through nested with-recovery-procedure
forms until onc was found which had a recovery
proccdurc for that failure code. The top-level
interpreter had a global recovery procedure for all
failure codes which turned al the robot’s motors off.

On lop of this basic sequencing facility wc
implementcd a number of additiona facilities,
including linear and non-linear scquences, state
machines, and a macro for retrying ascquence a
variable number of limes.

3.2 Event 1: Escape from the Office

The first event required the robot 10 explore a
mock-up office and find its way out. The “office”
was a 4-by -6-meter space containing real office
furniture (but no carpeting), including a desk, some
chairs, afiling cabinet and a cabinet-bookshelf.
There were three “doors’ in the office, consisting of
movable panels, Onc minute into the contest onc of
the three doors, chosen at random by the judges, was

opened. The robot had to find the open door, go
through it, and then navigate an obstacle field to a
finish line some fifteen meters distant. The robot
had to stop within two meters of the finish line.
The robot was starred at a known orientation but at
an unknown randomly chosen location within the
Oft-lee.

The strategy used was the following. The
robot wandered randomly around the office for onc
minute (the time that the doors were guaranteed to
be closed) while keeping track of its extremes of x-y
positions, Using this data it computed x-y
positions that would guarantee that it was outside of
the office. It then began to try each door in turn
until it reached alocation outside of the office. It
then moved to the finish line using the dcad-
rcckoning primitive.

The robot was tested about a dozen times
during the preparation for the contest. It never
failed, During the contest the judges consistently
chose to open the door that happened to result in the
worst-case performance. Nevertheless, the robot
placed second overall in this event.

On awhim, wc also implemented procedures
for entering and exiting the arena autonomously.
Because all of the sequencing infrastructure was
aready developed al we had to do was write asingle
top-level sequence. This took about ten minutes to
do. It was tested six times (including the two
officia contest runs) and worked every time.

3.3 Event 2: Deliver the Coffeepot

The second event was much more complex.
The event took place in a 15-by-24-meter area which
had been partitioned into a maze of offices and
hallways, (SW figure 3.) There was no furniture
this time; instcad cardboard boxes were placed in the
arena to serve as obstacles. The robots were allowed
to have a priori information about the layout of the
offices and hallways, but not the locations of the
boxes (which could be changed from run to run),

The objective in this contest was to find a
coffcepot which was located somewhere in the arena
and deliver it to a designated location, To
accommodate robots without any manipulation
hardware the robots were not required to actualy
pick up the coffeepot; it was sufficient for the robot
to move near the coffecpot and indicate that it knew
that it had located the pot. The robot was told ahead
of time which quadrant the coffcepot was in, and the
location of the destination.

The robot was not told its initial location nor
it initial orientation, The robot thercfore had to




begin by self-localizing itself to determine its
location in the map. This was done as follows.
The robot began by searching for a wall (in a
manner described below). Once it found onc it
began following the wall while making a record of
the pattern of left and right turns it was making. It
turns out that this pauern was unique for each of the
wall assemblies in the arena. The robot was thus
ableto determine its position after locating and
circumnavigating a wall assembly.

Dest
Room A
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Room B

Figure 3: The layout for experiment
2.

Once the robot had self-localized the rest of the
event was straightforward. The robot used a simple
path ﬁlanner to plan a scquence of rooms o visit Lo
search for the coffcepot, which was located in room
C. Because the robot knew the quadrant where the
coffecpot was located it only had to search three
rooms, It found the coffeepot in the second room,
(Actually, since the robot had no sensors capable of
detecting the coffeepot it had to be told thatit was in
the same room.) The robot then moved directly to
the delivery destination. Therobot's general route

after self-localizing is shown in figure 3. This
depiction leaves out the avoidance maneuvers the
robot performed to avoid boxes. These were not
recorded at the time.

This experiment was only performed once.
However, our robot was the only robot in the
contest to complete this event. It also took asingle
programmer lcssthan eighteen hours 10 program the
robot for this event.

4. Experiment 2: Trek to the Lab

The preceding results, while encouraging,
represent only anecdota data, and is thus of limited
utility for drawing general conclusions about
conditional sequencing. In order to provide some
more rigorous data wc set out to perform an
experiment with a statistically significant * number of
trials,

The environment wc used was the hallways of
the building where wc work, atypical modern office
building consisting of a maze of orthogonal
hallways with doorways and random obstacles. We
wanted to show that the performance of the robot
improved in a predictable, monotonic manner as
recovery procedures were added to sequences as they
were being tested.

For these experiments wc used a different
conditional sequencing infrastructure. Instead of the
simplified systcm used in the previous experiments
wc used a slightly modificd version of Firby’s
Reactive Action Package (RAP) systcm. RAPs arc
a sophisticated conditional sequencing language
whose details arc beyond the scope of this paper.
Thesystem is described in detail in [Firby89). To
date, RAPs have been used to produce very
sophisticated behavior in simulated environments,
but have not been used on real robots, These
cxperiments bridge the gap between a sophisticated
Al reactive execution system and robot hardware (cf.
[Georgef(87)).

Woc chose as our initial benchmark task to
navigate from a particular office to the mail room
which was approximately ten meters away on the
opposite side of the hallway. This turned out not to
bc a sufficiently difficult task. Wc performed thirty
trials with an initial version of the software; all but
onc worked perfectly.

Asthis |eft linle room for improvement, wc
chose a more difficult task. This time wc
programmed the robot to navigate to our lab which
was halfway across the building, a distance of
approximately seventy metersinvolving about a
dozen turns.




We defined a success metric based on the
distance traveled before an unrecoverable failure, and
ran fifteen trials, adding recovery procedures as
problems occurred. By the tenth tria the robot was

consistently completing Ihc run, (See figure 4.)

Sucosss Wetric

Trial &
Figure 4: Fifteen consecutive runs
from the office to the lab.

Wc once again raised our sights and
programmed the robot to return from the lab to the
office, The total length of the run was now nearly
150 meters, Wc ran forly-seven experiments, again
making adding recovery procedures as problems
occurred. The resulis are shown in figure 5. The
results arc not as consistent as lhc previous
experiment, but a clear upward trend in performance
can be seen.

Figure 5: Forty-seven consecutive
runs from the office to the lab and
back,

The total development time represented by all
nincty-two Of these experiments (including the thirty
runs to the copier room) was approximate] y three
weeks. Of course, this dots not include the time
spent developing the conditional sequencing
infrastructure and primitive behaviors.

S. Conclusions and Future Work

Wc have presented further experimental
evidence of the efficacy of conditional sequencing for
controlling real-world autonomous mobile robots in
indoor environments. Wc described the results of
over ninety experimental runs in a variety of
situations using two different conditional sequencing
infrastructures.  In all cases, robust effective
performance was achicved with very little
programming effort once the infrastructure was in
place.

Woc consider these results preliminary despite
the large number of trials relative to other published
studied of this kind. Wc arc currently working on a
design for a rigorous experimental protocol for
comparing different conditional sequencing
approaches and other navigation algorithms.

Woc arc also working on extending this work in
two different directions. First, wc plan to
investigate the application of conditional sequencing
to outdoor navigation, Second, wc arc investigating
compilation techniques to allow conditional
sequencing to run on small processors such as those
available for planetary rovers. Some preliminary
work in this direction has already been done [Gat93].
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